摘要:脂質體作為藥物載體,控制其粒徑大小是必要的。動態光散射法和單顆粒光學傳感技術可分別對亞微米、微米級別的粒徑進行分析,美國藥典中對粒徑分布有明確的規定。通過實驗驗證了美國PSS公司的Nicomp 380/ZLS激光粒徑檢測儀、AccuSizer 780A光學粒徑檢測儀的結合使用,可以對粒徑進行更全面科學的質量控制。
關鍵詞:脂質體;粒徑分布;檢測方法;USP729;PFAT5
一、脂質體的簡介
脂質體 (liposome)的藥劑學定義,是指將藥物包封于類脂質雙分子層內而形成的微型泡囊體。脂質體的主要類型有單層小泡(SUV)、小多層小泡(SMV)、多層小泡(MLV)、大單層小泡(LUV)和巨型多層小泡(GMV)。
脂質體是shou個被成功應用于臨床的納米藥物輸送系統,脂質體的大小和載藥量在藥物的藥代動力學和藥效學參數中起著關鍵作用。因此,準確和快速的測量脂質體的大小是必不可少的新型和有效的給藥系統。
二、脂質體粒徑的檢測方法
脂質體的粒徑通常采用動態光光散射法(Dynamic Light Scattering, DLS)及單顆粒光學傳感技術(Single Particle Optical Sensing, SPOS)。動態光散射法是測定亞微米脂質體大小Z常用的分析技術,單顆粒光學傳感技術(SPOS)用于測量大于1μm的脂質體的大小。
三、脂質體粒徑的控制
Maryam Amidi, Markus de Raad等人[1]進行了抗原表達免疫刺激脂質體的相關研究,該研究使用脂質體作為人工接種微生物,這些人工微生物可以通過基因編程隨心所欲地產生特定的抗原。將細菌體外轉錄和翻譯系統以及編碼模型抗原b-半乳糖苷酶的基因構建包埋在多層脂質體中。脂質體的體積加權平均直徑和大小分布由單顆粒光學傳感(AccusizerTM 780, Santa Barbara, California, USA)測定。β-半乳糖苷酶脂質體和AnExIL(表達抗原的免疫刺激脂質體)制劑的體積加權平均粒徑約為1.5 μm。研究表明[2],粒徑在20~200nm之間的脂質體是局部應用藥物通過細胞間滲透途徑進入活表皮的活性載體。
楊艷芳、謝向陽等人[3]對于粒徑與表面電荷影響脂質體體內藥物靶向遞送進行了相關的探討,粒子大小在100nm以內具有高透膜性,100~200nm的具有較高的透膜性。納米粒子的透膜性隨其粒徑的增加而減少,被動轉運膜的粒徑臨界值為500nm,大于500nm的粒子很難跨越極性上皮細胞進入循環系統。粒徑為500nm~10μm的固體顆粒均可被吞噬性細胞所攝取,且細胞吞噬作用隨其粒徑的增大而增強[4,5]。
脂質體的粒徑同樣也影響脂質體對腫瘤組織的靶向性。脂質體的粒徑必須大于10nm, 以避免腎臟濾過效應。脂質體可以發生EPR效應(enhanced permeability and retention effect,增加的滲透性和保留效應)的ZD粒徑由多個因素決定。作為被動靶向, 其完全依賴于擴散調節的藥物運輸機制。
Dreher等[6]報道, 粒徑為幾百納米的粒子容易在腫瘤組織中累積,獲得EPR效應的脂質體沉積的粒徑上限為400nm,大于400nm的脂質體不能擴散通過腫瘤間隙。腫瘤血管開孔的孔徑在50~100nm,是限制脂質體滲透進入腫瘤組織的重要途徑。綜合來說,脂質體通過EPR效應在腫瘤組織積聚的有效粒徑范圍為10~150nm。
四、粒徑控制的重要性
乳劑的平均粒徑分布和粒度大小與有效性和安全性有直接關聯[7]。在醫藥行業,注射劑中的大顆粒會伴隨著注射過程進入人體肺部,造成肺部肉芽腫(美國曾經發生過大粒子引起的YL事件,這是促成美國藥典委員會對大粒子關注的起因)。且乳劑中大粒子的存在會加速乳滴的聚集作用,會造成乳滴的絮凝,凝結,出現相分離現象。
一般來說,乳劑的粒徑保持在0.2~0.5μm可以保持Z 好的物理穩定性[8],且易被人體吸收。而人肺部的毛細血管在4μm~9μm之間,若脂肪乳含有大于5μm的粒子,或者粒子不夠穩定,在放置過程中有可能合并成為大于5μm的粒子,就會在肺部發生栓塞,且大粒子對肝臟產生損傷。因此脂肪乳注射液質量控制關鍵要控制平均粒徑(小于0.5μm)和大于5μm粒子的比例。
五、粒徑的分析
ZG醫藥工業研究總院的潘偉祥、劉潔等人[9]利用了美國Particle Sizing Systems公司的Nicomp 380/ZLS激光粒徑檢測儀、AccuSizer 780A光學粒徑檢測儀對前列地爾注射液配伍實驗中乳粒穩定性進行了探討,結果表明,動態光散射法適用于測量乳粒的平均粒徑,而光消減-單粒子光學傳感法是評價大粒子粒徑分布更為有效的方法,因此建議采用2種方法相結合,從而對乳劑的粒徑進行更全面科學的質量控制(包括平均粒徑和大粒子)。
圖1. Nicomp 380/ZLS對某乳劑樣品的光強徑高斯分布譜圖
圖2. AccuSizer 780對某乳劑樣品分析的粒徑-數量分布圖
圖1顯示的是Nicomp 380/ZLS激光粒徑檢測儀對某乳劑樣品分析的光強徑高斯分布譜圖,由圖1可知該乳劑的平均粒徑約為908nm;圖2顯示的是AccuSizer 780A光學粒徑檢測儀對某乳劑樣品分析的粒徑-數量圖譜,可知不同粒徑粒子的分布及其數量。兩種方法結合分析,可以更好的控制顆粒的質量。
美國藥典<USP>對粒徑檢測要求的變化
1、2004年10月,美國藥典在全新的USP<729>章節中公布了脂肪乳粒度測試要求,方法一采用動態光散射或者米氏散射原理測試脂肪乳的平均粒徑,規定強度值(Int-Weight);方法二采用光阻法統計1.8μm-50μm的脂肪乳顆粒體積在油相體積中的比例(PFAT5)值不得超過0.05%,有了對尾端大粒子明確的規定。
2、2007年11月USP<729>在方法一中做了變動,對于脂質體注射劑中的整體粒徑分布進行了標準的規定,無論乳劑樣品的濃度如何,用于注射乳劑的平均光強粒徑要小于500nm或0.5μm。
3、2010年USP<729>在方法二中延長了測試時間,運行兩次樣品,PFAT5值均不得超過0.05%。
4、2013年11月,USP<729>的ZX內容規定脂肪乳乳滴平均粒徑分布采用動態光散射原理,尾端大于5μm的乳滴(PFAT5)占油相體積比例采用光阻法測定,明確規定了顆粒粒度分布的檢測方法。
參考文獻
[1] Maryam Amidi, Markus de Raad, Daan J. A. Crommelin,etal.Antigen-expressing immunostimulatory liposomes as a genetically programmable synthetic vaccine[J]. Syst Synth Biol, 2011, 5:21-31.
[2] Egbaria K, Weiner N. Liposomes as a topical drug delivery system[J]. Adv Drug Del Rev 1990; 5:287–300.
[3] 楊艷芳,謝向陽,楊陽等。粒徑與表面電荷影響脂質體體內藥物靶向遞送的研究進展 [J]。藥學學報, 2013, 48(11):1644-1650。
[4] Groves E, Dart AE, Covarelli V, et al. Molecular mechanisms of phagocytic uptake in mammalian cells[J]. Cell Mol Life Sci, 2008, 65:1957-1976.
[5] Champion JA, Mitragotri S. Role of target geometry in phagocytosis[J]. Proc Natl USA, 2006, 103:4930-4934.
[6] Dreher MR, Liu W, Michelich, CR, et al. Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers [J]. J Natl Cancer Inst, 2006, 98: 335-344.
[7] Shibata H, Saito H, Yomota C, et al. Pharmaceutical quality evaluation of lipid emulsions containing PGE1: alteration in the number of large particles in infusion solutions [J]. Int J Pharm, 2009, 378(1): 167-176.
[8] CU LLAR I, Bull NJ, Forgarini AM, et al. More efficient preparation of parenteral emulsions or how to improve a pharmaceutical recipe by formulation engineering[J]. Che Eng Sci, 2005, 60 (8-9): 2127 -2134.
[9] 潘偉祥,劉潔,何軍等。前列地爾注射液配伍試驗中乳粒穩定性的探討[J]。Chinese J. of New Drugs, 2013, 22 (18) 。
本論文著重描寫脂肪蛋白質和膠束在稀釋或是濃縮液體環境中的脂質體粒子的測量. 由于需要控制, 修改及穩定脂質體
水可以分散和溶解許多種化合物. 有一種可溶解于水中的離子種是氯化鈉, 由于水的電解性質的特點氯化鈉可以容易地
不可溶解于水的性能允許類脂物進入特殊的化學鍵, 這種特殊化學鍵產生像血脂蛋白, 細胞膜, 膠束(膠態分子團)
目的:制備番茄紅素脂質體方法:采用薄膜-超聲法制備番茄紅素脂質體,通過劇命運設計法優化出了番茄紅素脂質體的組
本實驗采用瑞士萬通離子色譜儀,等度淋洗,測定阿霉 素脂質體中的硫酸根和銨根 阿霉素脂質體是被一層磷脂包裹的藥
本文以瑞士萬通卡氏水分測定儀等儀器研究了以卵磷脂和卵磷脂/膽固醇為包材,采用薄膜分散-擠壓法制備阿霉素納米脂
RV10 控制型旋轉蒸發儀是IKA新型旋轉蒸發儀中的旗艦型號,獨特的正反轉功能為制備均一脂質薄膜提供保證 I
微量熱泳動儀MST測定格爾小分子17-DMAG和Hsp90的相互作用;熱泳動MST技術從2012年使用以來,
DPN技術的實現過程: 吸附在原子力顯微鏡(AFM)針尖上的并與基底存在化學作用力的墨水分子,通過凝結